I’m Gonna Crawl

Fans of data visualisation will know the work of Edward Tufte well. His book “The Visual Display of Quantitative Information” is a classic which covers the history and the principals of conveying data in a concise way, that is easy to interpret. He is also credited with two different dataviz techniques: sparklines and image quilts. It was these two innovations that came to mind when I was discussing some cell migration results generated in our lab.

Sparklines are small displays of 1D information versus time to highlight the profile (think: stocks and shares).

Image quilts are arrays of images that together quickly provide you with an overview (think: Google Images results).

Analysing cell migration generates ‘tracks’ of many cells as they move around a 2D surface. Tracks are pairs of XY co-ordinates at different time points. We want to understand how these tracks change if we do something to the cells, e.g. knock-down a particular protein. There are many ways to analyse this. Such as: looking at the speed of migration, their directionality, etc. etc. When we were looking at lots of tracks, all jumbled up, I thought of sparklines and of image quilts and thought the easiest way to compare a control and test group would be to generate something similar.

We start out with many tracks within a field:


overviewIt’s difficult to see what is happening here, so it needs to be simplified.

I wrote a couple of procedures in IgorPro that calculated the cumulative distance that each cell had migrated at a given time point (say, the end of the movie). These cumulative distances were then ranked and then the corresponding cells were arrayed in the x-dimension according to how far they migrated. This was a little bit tricky to do, but that’s another story.


This plot shows the tracks with the shortest/slowest to the left and the furthest/fastest to the right. This can then be compared to a test set and differences become apparent. However, we need to look at many tracks and expanding these “sparklines” further is not practical – we want to provide an overview.

Accordingly, I wrote another procedure to array them in an XY array with a given spacing between the start points. This should give an “image quilt” feel.

I added gridlines to indicate the start position. The result is that a nice overview is seen and differences between groups can be easily seen at first glance (or not seen if there is no effect!).

This method works well to compare control and test groups that have a similar number of cells. If N is different (say, more than 10%), we need to take a random sample of tracks and array those to get a feel for what’s happening. Obviously the tracks could be arrayed according whatever parameter is required, e.g. highest speed, most directional etc. etc.

One thought is to do a further iteration where the tracks are oriented so that the start and end points are at the same point in X, or oriented so that the tracks have the same starting trajectory. As it is, the mix of trajectories spoils the ease of interpretation.

Obviously, this can be applied to tracks of anything: growing and shrinking microtubules, endosome/lysosome movement etc. etc.

Any suggestions for improvements are welcome, but I think this is a quick and easy way to just eyeball the data to see if there are any differences before calculating any other parameters. I thought I’d put the idea out there – maybe together with the code if there is any interest.

The post title is from I’m Gonna Crawl – Led Zeppelin from their In Through The Out Door LP


One response

  1. […] in 2D – tracking nuclear position over time. Cells migrate at random and I previously blogged about ways to visualise these tracks more clearly. Part of this earlier procedure was to set the start of each track at (0,0). This gives a random […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: